# Role of pulmonary vasodilators in the Fontan setting

Michael Cheung Melbourne

#### Melbourne Children's

Excellence in clinical care, research and education





1 I



### Fontan circuit



Low resistance to adequate pulmonary blood flow is critical Central PA anatomy (size and distortion) Intrapulmonary vessel (arborisation and flow) Unobstructed pulmonary venous flow (anatomical/physiological) Normal capillary bed





Melbourne Children's

Excellence in clinical care,

research and

education





Elevated resistance to flow? Goldilocks and her bears

### We know excessive PBF is bad Low/non-pulsatile flow also bad



### PVR

### Group A; Right lung PVR 2x greater than left lung Group B; Left/right lungs PVR no different



Henaine et al

| Thorac Cardiovasc Surg 2013;146:522-9





# **Endothelial function**

15 Fontan patients aged 7-17 years



All subjects; fall in PVR (p=0.016)

Khambadkone et al Circulation 2001



### Greater effect of NO in pts with previous pulsatile flow (p=0.006)



clinical care, research and education









### Pulmonary arterial hypertension specific therapy



### Supportive therapy hydration anticoagulation Iron supplementation

### NO

PDE5 inhibition sildenafil/vardenafil/tadalafil soluble Guanylate Cyclase stimulation Riociguat

### **ERA**

bosentan/ambrisentan/macitentan

### PGI

Prostacyclin (IV/subcut/nebulised)

Selexipag







### Pulmonary arterial hypertension specific therapy

### 2015 ESC/ERS Guidelines for the diagnosis and treatment of PAH



#### Melbourne Children's

![](_page_5_Picture_5.jpeg)

![](_page_5_Picture_6.jpeg)

![](_page_5_Picture_8.jpeg)

### Prostacyclin; *Studies in Fontan patients*

![](_page_6_Figure_1.jpeg)

Median VO2max 30.2 vs 27.6 mL/min/kg p=0.004

### • 2 exercise tests done 1/12 apart

- Randomised to single dose inhaled prostacyclin vs placebo
- Improved VO2max
- All patients with baseline VO2 <30ml/kg/min</li> improved with iloprost c/f placebo
- No change in spirometry

![](_page_6_Picture_9.jpeg)

![](_page_6_Picture_10.jpeg)

![](_page_6_Picture_11.jpeg)

![](_page_6_Picture_12.jpeg)

### Sildenafil; Studies in Fontan patients

### Impact of Oral Sildenafil on Exercise Performance in **Children and Young Adults After the Fontan Operation** A Randomized, Double-Blind, Placebo-Controlled, Crossover Trial

David J. Goldberg, MD; Benjamin French, PhD; Michael G. McBride, PhD; Bradley S. Marino, MD, MPP, MSCE; Nicole Mirarchi, MA; Brian D. Hanna, MD, PhD; Gil Wernovsky, MD; Stephen M. Paridon, MD; Jack Rychik, MD

![](_page_7_Figure_3.jpeg)

### No change in VO2 max

27 patients Mean age 15 +/-5 years 6 weeks of sildenafil,/placebo crossover trial **CPET** assessment

Mean VO2 max @ baseline 30.5ml/kg/min

![](_page_7_Figure_7.jpeg)

Whole group data Improved ventilatory efficiency @ AT (p=0.03)

Greater effect in those with BNP>100 pg/mL

Melbourne 巡洋 Children's Murdoch Childrens Research Excellence in clinical care, The Royal **Children's** Institute research and Hospital Melbourne education

Circulation 2011;123:1185

![](_page_7_Picture_12.jpeg)

![](_page_7_Picture_13.jpeg)

![](_page_7_Picture_14.jpeg)

![](_page_7_Picture_15.jpeg)

![](_page_7_Picture_16.jpeg)

### Sildenafil; Studies in Fontan patients

### Sildenafil Improves Exercise Hemodynamics in Fontan Patients

Alexander Van De Bruaene, MD, PhD\*; Andre La Gerche, MD, PhD\*; Guido Claessen, MD;

![](_page_8_Figure_3.jpeg)

### Improved cardiac output

Reduced PVR

![](_page_8_Picture_6.jpeg)

# Adults (n=10) Single dose of sildenafil (50mg) pre-exercise

### **Restored** exercise induced cGMP release

Circ CV Imaging 2014;7:265-273

![](_page_8_Picture_10.jpeg)

SVR greater fall

### ERAs; Studies in Fontan patients

# The effect of bosentan in patients with a failing Fontan circulation

Caroline Ovaert,<sup>1</sup> Daisy Thijs,<sup>2</sup> Daniel Dewolf,<sup>3</sup> Jaap Ottenkamp,<sup>4</sup> Hugues Dessy,<sup>5</sup> Philip Moons,<sup>6</sup> Marc Gewillig,<sup>2</sup> Luc Mertens<sup>2</sup>

CITY 2009

### N=9, median age 12 years (4-33 years) "Failing" Fontan

4 months of Bosentan treatment

No difference in 6MWT/functional class

# Impact of bosentan on exercise capacity in adultsafter the Fontan procedure: a randomizedcontrolled trialEur | Heat Failure 2013

Mark J. Schuuring<sup>1,2†</sup>, Jeroen C. Vis<sup>1†</sup>, Arie P.J. van Dijk<sup>3</sup>, Joost P. van Melle<sup>4</sup>, Hubert W. Vliegen<sup>5</sup>, Petronella G. Pieper<sup>4</sup>, Gertjan T. Sieswerda<sup>6</sup>, Rianne H.A.C.M. de Bruin-Bon<sup>1</sup>, Barbara J.M. Mulder<sup>1,2</sup>, and Berto J. Bouma<sup>1\*</sup>

![](_page_9_Figure_9.jpeg)

N=32, median age 29 years (18-56 years) 6 months of treatment No change in VO2 max, SF-36 QoL, NT-proBNP

#### Melbourne Children's Excellence in clinical care, research and education

![](_page_9_Picture_12.jpeg)

![](_page_9_Picture_13.jpeg)

### ERAs; Studies in Fontan patients

**Bosentan Improves Exercise Capacity in Adolescents and Adults After Fontan Operation** 

The TEMPO (Treatment With Endothelin Receptor Antagonist in Fontan Patients, a Randomized, Placebo-Controlled, Double-Blind Study Measuring Peak Oxygen Consumption) Study

Anders Hebert, MD; Ulla R. Mikkelsen, PhD; Ulf Thilen, MD, PhD; Lars Idorn, MD, PhD; Annette S. Jensen, MD, PhD; Edit Nagy, MD, PhD; Katarina Hanseus, DMSc; Keld E. Sørensen, DMSc; Lars Søndergaard, DMSc

![](_page_10_Figure_4.jpeg)

n=69, mean age 20 +/-7 years 14 weeks of treatment Increase in VO2 max +1.4 ml/kg/min (~+5%) Improved endurance +24 seconds **Reduced NT-proBNP** Improved FC in 9/32 Rx, 0/37 controls No change in QoL (SF-36)

#### Effect of Ambrisentan on Exercise Capacity in Adult **Patients After the Fontan Procedure**

Ari M. Cedars, MD<sup>a,\*</sup>, Joshua Saef, MD<sup>b</sup>, Linda R. Peterson, MD<sup>b</sup>, Andrew R. Coggan, PhD<sup>b</sup>, Eric L. Novak, MA<sup>b</sup>, Debra Kemp, RN<sup>b</sup>, and Philip A. Ludbrook, MD<sup>b</sup>

AmJ Card 2016

![](_page_10_Figure_9.jpeg)

n=19, aged 18-35 years 8 with reduced systolic function Randomised to ambrisentan or placebo12 weeks Improved VO2 max and Ve/VO2

#### Melbourne Children's Excellence in clinical care, research and education

![](_page_10_Picture_12.jpeg)

![](_page_10_Picture_13.jpeg)

![](_page_10_Picture_14.jpeg)

### ERAs; Studies in Fontan patients

#### Endothelin inhibitors lower pulmonary vascular resistance and improve functional capacity in patients with Fontan circulation

Gabriella Agnoletti, PhD,<sup>a</sup> Simona Gala, MD,<sup>a</sup> Francesca Ferroni, MD,<sup>a</sup> Roberto Bordese, MD,<sup>a</sup> Lorenzo Appendini, MD,<sup>b</sup> Carlo Pace Napoleone, MD,<sup>c</sup> and Laura Bergamasco, PhD<sup>b</sup>

![](_page_11_Figure_3.jpeg)

Reduced PVR in >70% of subjects Improved FEV1 and FVC in under 18s Adolescents and adults increase cardiac output JTCVS 2017;153:1468

All had PVRi>2 Woods units 6 children (9 yo) 8 adolescents (17 yo) 7 adults (26 yo) Bosentan in under 18, macitentan in adults 6/12 treatment

![](_page_11_Picture_6.jpeg)

### Combination therapy; *Studies in Fontan patients*

#### Sildenafil reduces pulmonary vascular resistance in single ventricular physiology

Hiroki Mori, In-Sam Park, Hiroyuki Yamagishi, Makoto Nakamura, Shiro Ishikawa, Kiyohiro Takigiku, Satoshi Yasukochi, Tomotaka Nakayama, Tsutomu Saji, Toshio Nakanishi \*

|                      | $\begin{array}{c} \text{ALL} \\ (n = 42) \end{array}$ | Group 1<br>(n = 7) | Group 2 $(n = 11)$ | Group 3<br>(n = 24) |
|----------------------|-------------------------------------------------------|--------------------|--------------------|---------------------|
| Medical therapy      |                                                       |                    |                    |                     |
| Furosemide           | 20                                                    | 3                  | 4                  | 13                  |
| Spironolactone       | 21                                                    | 2                  | 4                  | 15                  |
| Trichlormethiazide   | 2                                                     | 0                  | 0                  | 2                   |
| ACE inhibitors/ARB   | 16                                                    | 2                  | 4                  | 10                  |
| Carvedilol           | 3                                                     | 0                  | 2                  | 1                   |
| Digoxin              | 5                                                     | 0                  | 0                  | 5                   |
| Aspirin              | 20                                                    | 3                  | 8                  | 9                   |
| Warfarin             | 8                                                     | 1                  | 3                  | 4                   |
| Anti-arrhythmia drug | 1                                                     | 0                  | 0                  | 1                   |
| Bosentan             | 4                                                     | 0                  | 1                  | 3                   |
| Beraprost sodium     | 8                                                     | 1                  | 2                  | 5                   |
| Home oxygen therapy  | 6                                                     | 0                  | 5                  | 1                   |

Baseline characteristics.

Group 1 shunted; mean 1 year old Group 2 Glenn; mean 7 years old Group 3 Fontan; mean 13 years old

Int Journal of Cardiology 221 (2016) 122–127

### Children PVR >2.5 WU Sildenafil added to Rx

Palliation Fontan Glenn resistance index (WU • m<sup>z</sup>) 8 8 vascular 6 6 6 Pulmonary 2 0 0 0 postpre pre post pre post

![](_page_12_Picture_10.jpeg)

Melbourne

Excellence in clinical care,

research and

education

Children's

The Royal **Children's** Hospital

Melbourne

![](_page_12_Picture_11.jpeg)

Murdoch Childrens Research Institute

### IPAH; histology

![](_page_13_Picture_1.jpeg)

### Thickened intima and media

### Eccentric intimal thickening

![](_page_13_Picture_4.jpeg)

![](_page_13_Picture_5.jpeg)

### Muscularised small artery

![](_page_13_Picture_7.jpeg)

![](_page_13_Picture_9.jpeg)

![](_page_13_Picture_10.jpeg)

![](_page_13_Picture_11.jpeg)

![](_page_13_Picture_12.jpeg)

### Histology of vessels; *postmortem lung specimens*

#### I Verhoeff

#### II Azan

![](_page_14_Picture_3.jpeg)

Thicker walls

More collagen

Intrapulmonary arteries of Fontan patients (aged 20-35 years) Acellular fibrosis with collagen deposition Ridderbos JHLTx 2015

### Fontan

### Control

### III αSMA

![](_page_14_Picture_10.jpeg)

#### IV Caldesmon

![](_page_14_Picture_12.jpeg)

### PAH

![](_page_14_Picture_14.jpeg)

![](_page_14_Picture_15.jpeg)

![](_page_14_Picture_16.jpeg)

### Thin layer of actin

### Minimal smooth muscle

![](_page_14_Picture_19.jpeg)

![](_page_14_Picture_20.jpeg)

![](_page_14_Picture_21.jpeg)

![](_page_14_Picture_23.jpeg)

### Histology of vessels; *pulmonary veins*

![](_page_15_Picture_1.jpeg)

Pulmonary veins humans

- A control
- B Fontan; fibromuscular intimal
- proliferation and medial muscularisation
- (yellow arrow)
- Hays et al Heart 2017

### Low flow lung

### Control lung

- lobules
- C control lung

Henaine et al JTCVS 2013;146:522-9

#### Melbourne Children's

![](_page_15_Picture_18.jpeg)

![](_page_15_Picture_19.jpeg)

![](_page_15_Picture_20.jpeg)

### Summary

Lack of pulsatile/low pulmonary blood flow induces

- endothelial dysfunction
- structural changes arteries and veins
- and collagen deposition

### Variable results of studies Which patients benefit and why?

- Baseline PVR > 2 WU showed greater response to NO Khambadkone
- Previously banded patients greater response Khambadkone
- BNP > 100 had greater response to sildenafil Goldberg
- VO2 max < 30mL/min/kg had greater response to nebulised prostacyclin Rhodes
- Is some of the effect is in altering systemic vascular resistance? Van De Bruane

### • Changes seem different to pulmonary arterial hypertension with acellular fibrosis

• 71% of patients had fall in PVR with ERAs, all subjects had baseline PVR > 2 WU Agnoletti

• Perhaps improved Ve/VCO2 is opening capillaries and improving V/Q mismatch? Goldberg

![](_page_16_Picture_21.jpeg)

![](_page_16_Picture_22.jpeg)

![](_page_16_Picture_23.jpeg)

### Melbourne Children's

![](_page_17_Picture_3.jpeg)

![](_page_17_Picture_4.jpeg)

![](_page_17_Picture_6.jpeg)